2022年5月18日 星期三

ARK INVEST: 討論我們的特斯拉估值

 https://www.youtube.com/watch?v=44S4C6axNXg


 

Transcript

0:02

[Music]

0:08

welcome to fyi the four-year innovation

0:10

podcast

0:11

this show offers an intellectual

0:13

discussion on technologically enabled

0:15

disruption because investing in

0:17

innovation starts with understanding it

0:19

to learn more visit arc dash invest dot

0:22

com

0:23

[Music]

0:26

arc invest is a registered investment

0:28

advisor focused on investing in

0:30

disruptive innovation this podcast is

0:32

for informational purposes only and

0:33

should not be relied upon as a basis for

0:35

investment decisions it does not

0:37

constitute either explicitly or

0:38

implicitly any provision of services or

0:40

products by arc all statements made

0:42

regarding companies so securities are

0:44

strictly beliefs and points of view held

0:45

by arc or podcast guests and are not

0:48

endorsements or recommendations by arc

0:50

to buy sell or hold any security clients

0:52

of arc investment management may

0:54

maintain positions in the securities

0:55

discussed in this podcast

0:57

[Music]

0:59

so we're so excited that we just

1:00

published our latest tesla valuation

1:03

model for our 2026 price target um i

1:06

have here with me i'm tasha keeney i'm

1:09

here with sam korres and will summerlin

1:12

we're all arc analysts tesla is a great

1:15

example of how our research converges at

1:18

arc so will is our ai specialist of

1:22

course you know sam an expert on

1:25

electric vehicles and their batteries

1:27

and i cover autonomous technology and

1:29

autonomous driving

1:31

so uh first we'll kick it off by

1:33

explaining some of the the background of

1:36

our top down research and and how it

1:38

applies here and then we'll get into uh

1:40

the model itself

1:42

sounds good and you know just tying into

1:45

ark's research

1:47

ecosystem here in the convergence right

1:49

we have top-down models for electric

1:51

vehicles we've

1:53

got will he's talking about ai and

1:56

foundation models and training there and

1:59

then tasha from autonomous so

2:01

we all get together and

2:03

brainstorm and that's that's how we make

2:05

the tesla model which we'll get to but i

2:08

guess to kick things off we'll start on

2:09

the electric vehicle side of things

2:12

and our top line forecast for electric

2:15

vehicles

2:16

is that sales will increase roughly

2:18

eight-fold from 4.8 million units in

2:21

2021 to 40 million units in 2026 and

2:26

that's a global number

2:28

and that'd be roughly 53 compound annual

2:31

growth rate each year and what's really

2:34

driving this is battery cost declines

2:37

and so

2:38

we use wright's law and this is across

2:41

many different themes and technologies

2:44

but for batteries it's so important

2:46

because the battery is the single

2:49

largest cost component of the vehicle

2:51

and so wright's law states that for

2:53

every cumulative doubling of production

2:55

you get a fixed percent cost decline and

2:58

for

2:58

lithium-ion batteries that's roughly 28

3:02

and so we think that by 2023 a

3:06

electric vehicle is going to reach

3:08

sticker price parity so that's the

3:10

upfront cost the consumer sees with a

3:12

like for like gas-powered car and at

3:14

that point

3:15

it should really be a no-brainer and we

3:18

think that we're going to see a huge

3:20

shift in demand towards electric

3:22

vehicles

3:24

with that i'll pass it to will to talk

3:26

about

3:26

ai

3:28

so one of the opportunities we're really

3:29

excited about within ai is the

3:31

opportunity for foundation models and to

3:34

dig into this a little bit one of the

3:36

things that we've seen historically is

3:38

that the larger models are ai models the

3:40

better they perform

3:42

and this is a trend we think we'll

3:43

continue we've seen this with models

3:45

like gpt3 which is trained on most of

3:48

the text from the internet um we've seen

3:50

this across dali and bart and a number

3:52

of other large language models we think

3:54

that the same principle will apply uh

3:57

within the other application of ai which

3:59

is helping robots move through the

4:00

physical world

4:02

and tesla has really unique data assets

4:04

in that they've seen billions of miles

4:06

across their fleet and use that to train

4:08

their own models for full self-driving

4:09

and autonomy we think there's actually

4:11

an opportunity for tesla to make those

4:13

models openly available so that other

4:16

developers other companies can actually

4:18

build applications and products on top

4:20

of tesla's models and this is what we

4:22

call a foundation model

4:24

so based on our research and big ideas

4:26

we think the opportunity for foundation

4:28

models um could be worth about 25

4:30

trillion dollars in terms of enterprise

4:32

value by 2030 and we think the market

4:34

will bifurcate there will be models that

4:36

are used to solve problems in sort of

4:39

digital native contacts and so these are

4:41

models like gpt3 and dali that can help

4:44

edit text or manipulate images uh or

4:47

generate stories and then we think

4:49

there'll be a different use case which

4:51

is helping robots move through the

4:52

physical world and we think that'll be a

4:53

different set of foundation models so

4:56

while tesla hasn't actually openly

4:58

discussed this strategy we do think it's

5:00

a possibility especially given elon's

5:02

excitement around ai and given their

5:04

unique data assets especially given

5:06

their investments in compute

5:08

and so we're very excited to see how

5:09

that opportunity could manifest

5:11

with that turn it back to sam and tasha

5:13

thanks well

5:15

and you know one of the the biggest

5:16

potential markets that we see in ai is

5:19

autonomous driving and we think that all

5:23

vehicles in the future all passenger

5:25

cars will be electric so when we talk

5:27

about autonomous cars they're electric

5:29

autonomous cars

5:30

ultimately why we're so interested in

5:32

autonomous driving is because we think

5:34

that it could dramatically lower the

5:36

cost to get around

5:38

so an autonomous taxi could price as low

5:42

as 25 cents per mile that's less than

5:45

half of the cost of driving a personal

5:47

car in the us a new personal car that's

5:50

really dramatic it's going to bring a

5:52

bunch of people into the ride hill

5:53

market that are not customers today

5:56

because of that extremely low cost point

5:58

of course cars will be a lot safer too

6:00

but ultimately we think cost is going to

6:01

drive demand

6:03

and we think that this is such a large

6:05

opportunity

6:06

on a revenue basis the total addressable

6:09

market is about 11 trillion dollars and

6:12

and that's really our updated work on

6:14

autonomy

6:15

so it could be as cheap as 25 cents per

6:18

mile for a ride but we also see a lot of

6:20

demand at the you know 50 cents to a

6:23

dollar range um for uh existing uh

6:27

customers today that are either you know

6:29

traveling around for their own personal

6:31

needs or for work related travel we've

6:34

done some analysis on how customers

6:35

value their time uh to dimension those

6:38

price points

6:39

ultimately we think that uh the the

6:41

platform providers or the companies that

6:44

own the technology stack that allow cars

6:46

to be autonomous could enjoy enjoy an

6:50

enterprise value

6:51

of 11 to 12 trillion dollars by 2026 so

6:55

this is really a massive opportunity and

6:57

one that tesla is uniquely uh well set

7:00

up to to participate in as it's both a

7:02

vehicle manufacturer and potentially an

7:05

autonomous platform provider and with

7:07

that uh let's get into the model yeah

7:10

tasha let's let's just get to the to the

7:12

meat of it right off the bat what is

7:14

arcs 2026 price target for tesla and

7:18

then we'll go into the methodology right

7:20

so our expected value uh for tesla stock

7:24

price in 2026 is

7:27

4600 per share

7:29

we got there by

7:31

we have a monte carlo simulation that

7:34

we've run a million times and the

7:37

expected value is the average of of all

7:39

of those simulations

7:41

and then how does arc get to its

7:45

upside and downside cases

7:48

our bear case for tesla is uh 2 900 per

7:52

share in 2026 and that is the 25th

7:56

percentile of that million simulation

7:59

run of a mrt carlo analysis so in other

8:02

words we think

8:04

that

8:04

25 percent of the time

8:07

tesla could be worth 2 900 per share or

8:11

less and then our bull price per share

8:14

is 5

8:15

800

8:16

by 2026. so that is the 75th percentile

8:20

or in other words

8:22

we think that there's a 25 probability

8:25

that tesla could be worth five thousand

8:27

eight hundred hundred dollars per share

8:28

or more uh by 2026. so ultimately you

8:32

know this is all again a result of the

8:34

monte carlo analysis and our monte carlo

8:36

model is built up of 38 input variables

8:40

uh which we give a range of

8:42

possibilities within the model

8:45

and ultimately these are the factors

8:46

that we think could have some impact on

8:49

tesla's five-year price target

8:52

you know 38 inputs is a lot here uh

8:55

i think you know when i when we built

8:57

the model we then you know tested and we

9:00

found the the key inputs so so what are

9:02

those five key inputs that

9:05

uh we think are really the main drivers

9:07

of this model

9:09

so our five key inputs are capital

9:12

efficiency

9:13

how the the maximum production increase

9:17

that tesla can get in any given year so

9:19

how much they're allowed they're they're

9:21

able to increase production year over

9:23

year on a percentage basis

9:26

we also have an input for uh how many

9:28

cars we think will be on the the ride

9:31

hill network uh by 2026 this is um the

9:34

potential for tesla to launch a

9:35

human-driven ride hill network um by

9:38

that point um and then we also have the

9:42

uh estimated launch year for robo taxis

9:45

so for autonomous ride hail when do we

9:47

think that launch could potentially

9:49

happen

9:50

so while we do you know those are our

9:52

five key inputs out of the 38 and then

9:55

you know you'll notice as you play

9:57

around with the model which is open

9:58

sourced and available on github that the

10:00

ones that really affect it the most are

10:03

our assumptions around capital

10:04

efficiency and autonomy

10:07

great so before we dive into autonomy

10:09

because that's that's really where the

10:11

bulk of the value is coming from maybe

10:14

i'll just touch on

10:16

capital efficiency and how we're looking

10:18

at it

10:19

and some context around that

10:21

and so originally when we were doing

10:23

research on electric vehicles you know

10:26

we're saying what is the capital

10:27

efficiency or how much money needs to be

10:29

spent for an incremental unit of

10:32

capacity

10:34

to be built in the

10:37

auto industry as it stands and that

10:38

number was fourteen thousand dollars

10:41

and so that's kind of what we had used

10:43

and said okay this is the baseline if

10:45

tesla

10:46

matches industry average and so if you

10:50

go and you look in the model

10:52

and our blog you can see that when tesla

10:55

first started ramping the model 3

10:58

their capital efficiency was far far

11:00

worse they were at roughly eighty four

11:02

thousand dollars per incremental unit of

11:04

capacity but they

11:07

dramatically improved and in 2021 they

11:10

were down to seven thousand seven

11:12

hundred dollars per incremental unit of

11:13

capacity which is pretty

11:16

remarkable right already half of what

11:18

the industry average was

11:20

and so in the monte carlo

11:23

we say that in the downside case

11:25

they just marginally improve and and

11:28

stay at roughly seven thousand dollars

11:29

per unit incremental unit capacity

11:32

but in our upside case we have that cost

11:35

coming down to two thousand dollars and

11:38

i think what's what's really interesting

11:39

is if you play with the model you can

11:41

see that you know this input itself

11:44

is actually not as meaningful as it was

11:46

in the past

11:48

because

11:49

tesla is no longer capital constrained

11:52

and so what that means is that you know

11:54

their ability to scale production is not

11:58

based on how much money they have in the

12:00

bank account how much money they can

12:01

spend it's really based on

12:04

management bandwidth whether or not

12:05

there's supply constraints which have

12:08

been particularly relevant over the past

12:10

year

12:11

and so that's where this other key input

12:13

comes into play

12:15

which is the maximum annual production

12:17

increase

12:18

and you know this is

12:20

probably one of the bigger drivers on

12:23

the vehicle production side of it

12:26

but then you know tasha

12:28

i'll hand it to you to talk about

12:30

autonomous because really the the launch

12:32

here and when adoption happens i think

12:35

is

12:36

is the biggest single biggest driver for

12:38

this model

12:39

thanks sam robo taxis do have you know a

12:42

very large impact

12:44

on our valuation target um you'll notice

12:47

that in the blog we've broken out that

12:49

they will contribute approximately 60

12:53

of the expected value in the model um

12:56

can be attributed to

12:57

robo taxis um and the we've changed a

13:01

little bit the way that we've we've

13:02

modeled this versus last year um so last

13:04

year we had a single input which was the

13:07

probability of robo-taxi launch within

13:09

the five-year window

13:12

but we changed that this year to have we

13:14

still have that probability input um but

13:16

we also have the robo-taxi launch year

13:19

input

13:20

and effectively this is just because i

13:23

think this is a bit a little bit closer

13:24

to how people think of you know whether

13:26

or not tesla will launch robo taxis it's

13:29

okay if it happens which year will it

13:30

happen if at all

13:32

and so you'll notice that uh you know in

13:34

our downside case uh we're assuming that

13:36

tesla launches in 2026

13:39

so that would be four years after elon

13:41

musk has said that they he expects to

13:44

solve for full autonomy and in the the

13:46

upside case we're assuming a launch year

13:49

of 2023

13:50

so again that would be actually one year

13:52

after um what elon has said could

13:54

possibly happen

13:56

and the mid at the midpoint of our

13:58

assumptions it's the 2024 year so about

14:02

two years later than expected by the

14:04

company

14:05

and i also just want to point out that

14:07

nine percent of the time in the model uh

14:10

the launch year actually falls out of

14:13

the window that we're forecasting out of

14:15

that five years so effectively in nine

14:18

percent of our simulations were

14:20

including no revenue um for autonomous

14:23

taxis at all

14:25

another thing that we updated uh that i

14:27

alluded to earlier is how we think of

14:30

the price points that we'll see in the

14:32

autonomous ride hill market so you know

14:35

when we first did our analysis on

14:37

autonomous taxis we saw that they could

14:38

be priced as low as 25 cents per mile

14:41

but ultimately we think that um you know

14:43

we've seen bride hill has proven that

14:45

there is demand around the two dollars

14:47

to four dollars per mile price range

14:50

that we see today

14:51

we think that um because consumers

14:55

in western markets our analysis shows

14:57

that they value their time at roughly

14:59

equivalent to

15:01

average hourly wage for

15:03

miles driven uh with the purpose of

15:05

going to work so for commuting miles

15:08

at roughly equivalent to hourly wage and

15:10

then for non-commuting miles or driving

15:13

that you're doing for your personal use

15:14

that's valued at roughly half of hourly

15:16

wage so that gives a lot a lot of demand

15:20

in western markets at price points of

15:23

about a dollar 10 to 60 cents

15:26

and then in

15:28

lower income countries we expect

15:30

significant demand at the 50 cent mile

15:33

mark um that's because if you look at uh

15:36

you know how deedy is already pricing

15:38

ride hail options in in places like

15:40

china today it's already pretty

15:41

inexpensive at about 50 cents so

15:44

ultimately the 25 cents per mile price

15:46

point comes in

15:47

and we think that this this will be the

15:49

long tail of of additional customers

15:52

that will now be brought into the ride

15:54

hill market that were not there before

15:57

that's where um you know we see a

15:58

dramatic change

16:00

in habits and again in additional people

16:02

coming into the market for this

16:04

extremely cheap service so ultimately

16:07

you know all of those price points get

16:08

factored into our model uh we're

16:10

assuming that once tesla penetrates a

16:13

certain segment of the market uh if they

16:15

keep on adding autonomous miles they

16:17

fall into the next uh price point

16:19

segment and that's ultimately how you

16:20

can think of it factoring in

16:22

um so

16:24

this

16:25

what's the end effect well we think that

16:27

there's more opportunity or more revenue

16:29

opportunity in autonomous driving than

16:31

we previously thought there was

16:33

so tasha as people go through the model

16:36

and play with it

16:37

um one it's like if you're gonna do that

16:39

you know download this on github uh but

16:42

if people are gonna do that you know and

16:44

they have questions or

16:46

uh they don't understand something

16:47

what's the best way for people to to

16:50

reach out and to interact with us

16:51

because you know a big part of ark's

16:53

research is this open sourcing

16:56

and research ecosystem so what's the

16:58

best way for people to to get

17:01

involved and interact

17:03

good question there's really two ways so

17:05

for our github nerds out there you can

17:08

definitely post on github

17:11

use the the comments while there to to

17:14

raise any issues that you see with the

17:16

model or the problem section

17:18

and also tweet at us you know i am tasha

17:22

arc

17:22

uh sam your your

17:25

handle is

17:27

s chorus arc

17:29

and our director of research b bewinton

17:31

arc

17:33

we are all available to answer questions

17:35

on the model and we'd love to hear your

17:37

feedback

17:39

arc believes that the information

17:41

presented is accurate and was obtained

17:42

from sources that arc believes to be

17:44

reliable however arc does not guarantee

17:46

the accuracy or completeness of any

17:48

information and such information may be

17:50

subject to change without notice from

17:51

arc historical results are not

17:53

indications of future results certain of

17:55

the statements contained in this podcast

17:57

may be statements of future expectations

17:59

and other forward-looking statements

18:00

that are based on arc's current views

18:02

and assumptions and involve known

18:03

unknown risks and uncertainties that

18:05

could cause actual results performance

18:07

or events to differ materially from

18:08

those expressed or implied in such

18:10

statements

18:15

[Music]

18:16

you

 

 0:02

[音樂]

0:08

歡迎來到四年創新

0:10

播客

0:11

這個節目提供了一個知識分子

0:13

技術支持的討論

0:15

中斷,因為投資

0:17

創新始於理解它

0:19

要了解更多信息,請訪問 arc dash 投資點

0:22

com

0:23

[音樂]

0:26

arcinvest是註冊投資

0:28

專注於投資的顧問

0:30

這個播客是顛覆性的創新

0:32

僅供參考和

0:33

不應以此為依據

0:35

投資決策它不

0:37

構成明確或

0:38

隱含地提供任何服務或

0:40

產品 by arc 所有聲明

0:42

關於公司,因此證券是

0:44

嚴格持有的信念和觀點

0:45

通過弧或播客嘉賓,而不是

0:48

arc的認可或推薦

0:50

買入賣出或持有任何證券客戶

0:52

弧投資管理可能

0:54

維持證券頭寸

0:55

在這個播客中討論過

0:57

[音樂]

0:59

所以我們很興奮,我們只是

1:00

發布了我們最新的特斯拉估值

1:03

我們 2026 年價格目標的模型

1:06

和我在一起,我是塔莎基尼,我是

1:09

sam korres will summerlin 在這裡

1:12

我們都是電弧分析師 特斯拉很棒

1:15

我們的研究如何融合的例子

1:18

arc so will 是我們的人工智能專家

1:22

當然你知道山姆是一位專家

1:25

電動汽車及其電池

1:27

我涵蓋自主技術和

1:29

自動駕駛

1:31

所以首先我們會開始

1:33

解釋一些背景

1:36

我們自上而下的研究以及它是如何進行的

1:38

適用於此,然後我們將進入呃

1:40

模型本身

1:42

聽起來不錯,你知道只是配合

1:45

方舟的研究

1:47

這裡的生態系統在匯聚權

1:49

我們有自上而下的電動模型

1:51

我們擁有的車輛

1:53

他會不會在談論人工智能和

1:56

基礎模型和培訓

1:59

然後來自自治的tasha

2:01

我們都聚在一起

2:03

頭腦風暴,這就是我們製作的方式

2:05

我們將使用的特斯拉模型,但我

2:08

猜想開始我們將開始

2:09

電動汽車的一面

2:12

以及我們對電動汽車的收入預測

2:15

汽車

2:16

是銷售額會大致增加嗎

2:18

480 萬台的 8

2:21

2021 年到 2026 年達到 4000 萬台,

2:26

這是一個全球數字

2:28

這將是大約 53 複合年

2:31

每年的增長率以及實際情況

2:34

推動這是電池成本下降

2:37

所以

2:38

我們使用賴特定律,這是跨越

2:41

許多不同的主題和技術

2:44

但對於電池來說,它是如此重要

2:46

因為電池是單體

2:49

車輛的最大成本組成部分

2:51

所以賴特定律指出,對於

2:53

產量每累計翻一番

2:55

你得到一個固定百分比的成本下降和

2:58

為了

2:58

鋰離子電池大約 28

3:02

所以我們認為到 2023

3:06

電動汽車將達到

3:08

標價平價所以這就是

3:10

消費者看到的前期成本

3:12

喜歡汽油動力汽車和

3:14

那一點

3:15

這真的應該是不費吹灰之力的,我們

3:18

認為我們會看到一個巨大的

3:20

需求向電動化轉變

3:22

汽車

3:24

我會把它傳給will to talk

3:26

關於

3:26

3:28

所以我們真正的機會之一

3:29

興奮內ai

3:31

基礎模型的機會,並

3:34

深入研究其中之一

3:36

我們在歷史上看到的事情是

3:38

較大的模型是ai模型

3:40

他們表現得更好

3:42

這是我們認為我們會的趨勢

3:43

繼續我們已經在模型中看到了這一點

3:45

gpt3 一樣,它受過大部分訓練

3:48

來自互聯網的文字我們已經看到了

3:50

這橫跨大理和巴特和一個數字

3:52

我們認為的其他大型語言模型

3:54

同樣的原則也適用

3:57

在人工智能的另一個應用程序中

3:59

正在幫助機器人通過

4:00

物理世界

4:02

特斯拉擁有真正獨特的數據資產

4:04

因為他們已經看到了數十億英里

4:06

在他們的艦隊中並用它來訓練

4:08

他們自己的全自動駕駛模型

4:09

我們認為實際上有自主權

4:11

特斯拉有機會製造這些

4:13

模型公開可用,以便其他

4:16

其他公司的開發人員實際上可以

4:18

在上面構建應用程序和產品

4:20

特斯拉的模型,這就是我們

4:22

調用基礎模型

4:24

所以基於我們的研究和大創意

4:26

我們認為基礎的機會

4:28

模型 um 可能值 25 左右

4:30

萬億美元的企業

4:32

2030 年的價值,我們認為市場

4:34

會分叉 會有模型

4:36

用於解決某種問題

4:39

數字原生聯繫人,所以這些是

4:41

可以提供幫助的 gpt3 dali 等模型

4:44

編輯文本或操作圖像呃或

4:47

產生故事然後我們思考

4:49

會有一個不同的用例

4:51

正在幫助機器人通過

4:52

物理世界,我們認為這將是一個

4:53

不同的基礎模型集

4:56

雖然特斯拉實際上並沒有公開

4:58

討論了這個策略,我們確實認為它是

5:00

尤其是考慮到埃隆的可能性

5:02

圍繞 ai 的興奮和考慮到他們的

5:04

獨特的數據資產,特別是給定的

5:06

他們在計算方面的投資

5:08

所以我們很高興看到如何

5:09

這個機會可能會顯現

5:11

把它轉回山姆和塔莎

5:13

非常感謝

5:15

你知道最大的之一

5:16

我們在人工智能中看到的潛在市場是

5:19

自動駕駛,我們認為所有

5:23

未來的車輛所有乘客

5:25

汽車將是電動的,所以當我們交談時

5:27

關於自動駕駛汽車,它們是電動的

5:29

自動駕駛汽車

5:30

最終為什麼我們如此感興趣

5:32

自動駕駛是因為我們認為

5:34

它可以顯著降低

5:36

出行費用

5:38

因此自動駕駛出租車的價格可能會低至

5:42

每英里 25 美分,低於

5:45

個人駕駛費用的一半

5:47

car in the us 一輛新的私人汽車

5:50

真的很戲劇化,它會帶來一個

5:52

一群人進入騎山

5:53

今天不是客戶的市場

5:56

因為那個極低的成本點

5:58

當然汽車也會更安全

6:00

但最終我們認為成本會

6:01

推動需求

6:03

我們認為這是一個很大的

6:05

機會

6:06

以收入為基礎的總可尋址

6:09

市場規模約為 11 萬億美元,

6:12

這真的是我們更新的工作

6:14

自治

6:15

所以它可能便宜到每人 25 美分

6:18

一英里,但我們也看到了很多

6:20

你知道 50 美分到一個

6:23

美元範圍 um for uh 現有 uh

6:27

今天的客戶要么是你認識的

6:29

為自己的私人旅行

6:31

需要或與工作相關的旅行,我們已經

6:34

對客戶如何做一些分析

6:35

珍惜他們的時間 uh 來衡量那些

6:38

價格點

6:39

最終我們認為呃

6:41

平台提供商或公司

6:44

擁有允許汽車的技術堆棧

6:46

自主可以享受

6:50

企業價值

6:51

2026 年將達到 11 12 萬億美元

6:55

這確實是一個巨大的機會

6:57

一輛特斯拉獨一無二的

7:00

最多參加,因為它既是一個

7:02

汽車製造商和潛在的

7:05

自治平台提供商並與

7:07

嗯,讓我們進入模型是的

7:10

tasha 讓我們開始吧

7:12

它的肉是什麼

7:14

特斯拉的 arcs 2026 價格目標和

7:18

然後我們將進入正確的方法

7:20

所以我們對特斯拉股票的期望值

7:24

2026年的價格是

7:27

每股4600

7:29

我們到了那裡

7:31

我們有一個蒙特卡羅模擬

7:34

我們已經運行了一百萬次並且

7:37

期望值是所有的平均值

7:39

那些模擬

7:41

然後弧是如何到達它的

7:45

上行和下行案例

7:48

我們的特斯拉熊箱是 uh 2 900 per

7:52

分享到 2026 年,也就是第 25

7:56

百萬模擬的百分位數

7:59

在其他中運行mrt carlo分析

8:02

我們認為的話

8:04

8:04

25% 的時間

8:07

特斯拉可能價值 2 900 每股或

8:11

更少,然後是我們的每股牛市價格

8:14

5

8:15

800

8:16

2026 年。所以這是第 75 個百分位

8:20

或者換句話說

8:22

我們認為有 25 的概率

8:25

特斯拉可能值五千

8:27

每股八百美元

8:28

2026 年甚至更多。所以最終你

8:32

知道這一切又是

8:34

蒙特卡羅分析和我們的蒙特卡羅

8:36

模型由 38 個輸入變量構成

8:40

呃,我們給出了一個範圍

8:42

模型中的可能性

8:45

最終這些是因素

8:46

我們認為可能會對

8:49

特斯拉的五年目標價

8:52

你知道 38 個輸入在這裡很多

8:55

我想你知道我們什麼時候建造的

8:57

我們然後你知道的模型測試了,我們

9:00

找到了關鍵輸入所以是什麼

9:02

這五個關鍵輸入

9:05

呃,我們認為真的是主要驅動力

9:07

這個模型的

9:09

所以我們的五個關鍵投入是資本

9:12

效率

9:13

最大產量如何增加

9:17

特斯拉可以在任何一年獲得,所以

9:19

他們被允許多少

9:21

能夠增加一年的產量

9:23

年百分比

9:26

我們也有一個輸入,呃多少

9:28

我們認為會在路上行駛的汽車

9:31

希爾網絡 呃,到 2026 年,這是

9:34

特斯拉有可能推出一款

9:35

人類駕駛的騎山網絡 um by

9:38

那一點,然後我們也有

9:42

呃,機器人出租車的預計發布年份

9:45

所以對於自動駕駛冰雹我們什麼時候

9:47

認為發射可能

9:49

發生

9:50

所以當我們知道這些是我們的

9:52

38 個按鍵中輸入 5 個按鍵,然後

9:55

你知道你會在玩的時候注意到

9:57

與打開的模型一起

9:58

來源並在 github 上可用

10:00

真正影響它最大的是

10:03

我們對資本的假設

10:04

效率和自主權

10:07

太好了,所以在我們深入自主之前

10:09

因為那才是真正的地方

10:11

大部分價值可能來自

10:14

我會談談

10:16

資本效率和我們的看法

10:18

在它

10:19

以及周圍的一些背景

10:21

所以最初我們在做的時候

10:23

你知道的電動汽車研究

10:26

我們說什麼是首都

10:27

效率或需要多少錢

10:29

花費了一個增量單位

10:32

容量

10:34

建在

10:37

汽車工業的現狀

10:38

數字是一萬四千美元

10:41

這就是我們使用的那種

10:43

並說好吧,如果這是基線

10:45

特斯拉

10:46

符合行業平均水平,因此如果您

10:50

去看看模型

10:52

和我們的博客你可以看到當特斯拉

10:55

首先開始加速模型 3

10:58

他們的資本效率遠遠不夠

11:00

更糟糕的是,他們大約八十四歲

11:02

千元/增量單位

11:04

能力,但他們

11:07

顯著改善,並在 2021

11:10

下降到七千七

11:12

百元/增量單位

11:13

可愛的容量

11:16

了不起的權利已經一半

11:18

行業平均水平是

11:20

所以在蒙特卡洛

11:23

我們說在不利的情況下

11:25

他們只是略微改善,並且

11:28

停留在大約七千美元

11:29

每單位增量單位容量

11:32

但在我們的上行情況下,我們有這個成本

11:35

降到兩千美元

11:38

我認為真正有趣的是什麼

11:39

如果你和模型一起玩,你可以

11:41

看到你知道這個輸入本身

11:44

實際上沒有以前那麼有意義

11:46

在過去

11:48

因為

11:49

特斯拉不再受資金限制

11:52

所以這意味著你知道

11:54

他們的規模生產能力不

11:58

根據他們有多少錢

12:00

銀行賬戶可以存多少錢

12:01

花費它真的是基於

12:04

是否管理帶寬

12:05

存在供應限制

12:08

在過去特別重要

12:10

12:11

這就是其他關鍵輸入的地方

12:13

發揮作用

12:15

這是最大年產量

12:17

增加

12:18

你知道這是

12:20

可能是更大的驅動因素之一

12:23

它的車輛生產方面

12:26

但是你知道塔莎

12:28

我把它交給你談談

12:30

自主,因為真的是發射

12:32

我想在這里和收養髮生時

12:35

12:36

是最大的單一最大驅動力

12:38

這個模型

12:39

謝謝山姆機器人出租車你知道嗎

12:42

影響很大

12:44

在我們的估值目標上,你會注意到

12:47

在博客中我們已經打破了

12:49

他們將貢獻大約 60

12:53

模型中的期望值 um

12:56

可以歸因於

12:57

機器人出租車嗯,我們已經改變了

13:01

有點像我們的方式

13:02

與去年相比,這個模型是最後一個

13:04

一年我們有一個單一的輸入,即

13:07

機器人出租車發射的概率

13:09

五年窗口

13:12

但今年我們改變了這一點

13:14

仍然有那個概率輸入,但是

13:16

我們還有機器人出租車發布年

13:19

輸入

13:20

實際上這只是因為我

13:23

認為這有點接近

13:24

人們對你的看法知道是否

13:26

特斯拉是否會推出自動駕駛出租車

13:29

好吧,如果它發生在哪一年

13:30

如果有的話

13:32

所以你會注意到你知道

13:34

我們的不利情況呃我們假設

13:36

特斯拉將於 2026 年推出

13:39

所以那將是埃隆之後的四年

13:41

馬斯克曾表示,他們希望

13:44

解決完全自治並在

13:46

上行情況我們假設發布年份

13:49

2023 年的

13:50

所以那實際上是一年

13:52

嗯,埃隆說過的話可以

13:54

可能發生

13:56

和我們中點的中點

13:58

假設這是 2024

14:02

比預期晚兩年

14:04

公司

14:05

我也只想指出

14:07

百分之九的時間在模型中

14:10

發射年份實際上不屬於

14:13

我們預測的窗口

14:15

這五年如此有效地在九

14:18

我們模擬的百分比是

14:20

包括自治的沒有收入

14:23

出租車

14:25

我們更新的另一件事,呃,我

14:27

前面提到的是我們是怎麼想的

14:30

我們將在

14:32

自動駕駛山市場,所以你知道

14:35

當我們第一次對

14:37

我們看到的自動出租車,他們可以

14:38

價格低至每英里 25 美分

14:41

但最終我們認為你知道

14:43

我們已經看到新娘山已經證明了

14:45

兩美元左右有需求

14:47

到每英里四美元的價格範圍

14:50

我們今天看到的

14:51

我們認為嗯,因為消費者

14:55

在西方市場,我們的分析顯示

14:57

他們估計自己的時間大概是

14:59

相當於

15:01

平均小時工資

15:03

行駛里程數,目的是

15:05

上班是為了通勤里程

15:08

大約相當於小時工資和

15:10

然後是非通勤里程或駕駛

15:13

您為個人使用而做的事情

15:14

這大約是每小時的一半

15:16

工資,所以這給了很多很多的需求

15:20

在西方市場的價格點

15:23

大約一美元 10 60 美分

15:26

然後在

15:28

我們預期的低收入國家

15:30

50 美分英里的巨大需求

15:33

mark um 那是因為如果你看

15:36

你知道deedy已經定價多少了

15:38

在像這樣的地方乘坐冰雹選擇

15:40

今天的中國已經很漂亮了

15:41

便宜約 50 美分,所以

15:44

最終每英里 25 美分的價格

15:46

點進來

15:47

我們認為這將是

15:49

額外客戶的長尾

15:52

現在將被帶入騎行

15:54

以前沒有的山市場

15:57

這就是你知道我們看到的

15:58

戲劇性的變化

16:00

在習慣和其他人中

16:02

為此進入市場

16:04

非常便宜的服務,所以最終

16:07

你知道所有這些價格點

16:08

考慮到我們的模型,呃,我們是

16:10

假設一旦特斯拉穿透

16:13

市場的某些部分,呃,如果他們

16:15

他們繼續增加自主里程

16:17

落入下一個呃價位

16:19

細分,這就是你最終的方式

16:20

可以考慮考慮

16:22

16:24

16:25

我們認為最終效果是什麼

16:27

有更多機會或更多收入

16:29

自動駕駛的機會比

16:31

我們以前認為有

16:33

所以當人們通過模型時,塔莎

16:36

和它一起玩

16:37

嗯,就像你要那樣做

16:39

你知道在 github 上下載這個,呃,但是

16:42

如果人們會這樣做,你知道並且

16:44

他們有問題或

16:46

呃,他們不明白的東西

16:47

人們最好的方法是什麼

16:50

伸出手與我們互動

16:51

因為你知道方舟的很大一部分

16:53

研究是開源的

16:56

和研究生態系統,那麼什麼是

16:58

人們獲得的最佳方式

17:01

參與和互動

17:03

好問題真的有兩種方法

17:05

對於我們的 github 書呆子,你可以

17:08

絕對在github上發帖

17:11

在那裡使用評論

17:14

提出您看到的任何問題

17:16

模型或問題部分

17:18

還向我們發推文你知道我是塔莎

17:22

17:22

呃,山姆你的

17:25

句柄是

17:27

s 合唱弧

17:29

和我們的研究主管 b bewinton

17:31

17:33

我們都可以回答問題

17:35

在模型上,我們很想听聽你的

17:37

回饋

17:39

arc 認為信息

17:41

呈現是準確的,並獲得

17:42

來自 arc 認為的來源

17:44

可靠但電弧不保證

17:46

任何的準確性或完整性

17:48

信息和此類信息可能是

17:50

如有更改,恕不另行通知

17:51

arc 歷史結果不是

17:53

未來結果的跡象

17:55

此播客中包含的聲明

17:57

可能是對未來預期的陳述

17:59

和其他前瞻性陳述

18:00

基於 arc 的當前視圖

18:02

和假設並涉及已知

18:03

未知的風險和不確定性

18:05

可能導致實際結果性能

18:07

或與有重大差異的事件

18:08

那些明示或暗示的

18:10

陳述

18:15

[音樂]

18:16

 

 

沒有留言: